National Repository of Grey Literature 10 records found  Search took 0.00 seconds. 
Materials and Components for Lithium-Ion Power Sources
Jirák, Tibor ; Kadlec, Jaromír (referee) ; Paidar,, Martin (referee) ; Vondrák, Jiří (advisor)
The dissertation thesis deals with electrode materials and components for lithium-ion power sources. The thesis works with two different kinds of materials, concretely nanostructured Li4Ti5O12 with spinel basis and LiCoO2 with layered structure. The electrochemical properties, structure and element analysis and utilization possibilities in electrochemical industry of new technological electrode material Li4Ti5O12 were investigated. The influences of admixtures and electrolytes on characteristics of electrode materials with aforesaid active masses were also examined. Low cost price, environmental safety and obtained results of electrochemical measurements and structure analysis refer to wide possibilities of usage electrode material Li4Ti5O12 in the field of electrochemistry.
Positive electrode for lůithium-ion batteries based on LiCoO2
Krištof, Petr ; Kazda, Tomáš (referee) ; Sedlaříková, Marie (advisor)
This diploma thesis deals with materials used by production ofcathodes of Lithium-ion batteries. Primary this thesis deals with LiCoO2material and its subsidizing of alkali metals. The first part deals with the charakteristic of Lithium-ion batteries, used materials, possibilities of doping and charging. The practical part concentrates on production of active substance of cathode and doping this substance by sodium and potassium. The methods of evaluation were used galvanostaticcycling and x-ray analysis (XRD).
Modification of Cathode Materials for Lithium-Ion Accumulators
Kazda, Tomáš ; Studničková, Marie (referee) ; Vanýsek, Petr (referee) ; Vondrák, Jiří (advisor)
This doctoral thesis deals with properties of cathode materials for Lithium-Ion accumulators. The theoretical part consists of an overview of the cathode materials and a brief introduction into the very wide area of Lithium-Ion accumulators. The goal of this work was to study the LiCoO2 cathode material and to prepare some modifications of it by doping with other elements. This work was then extended with the study of the new generation of high-voltage cathode materials. The aim of this part was to study their synthesis, their physical and electrochemical properties and the influence of used electrolytes on their electrochemical stability. The work then focuses on the influence of doping these materials and the influence of another part of the battery – the separator – on the overall properties of these types of cathode materials. The results show that doping the LiCoO2 cathode material with sodium and potassium lead to an enhancement of some electrochemical properties as stability during cycling or stability at higher loads and also the long-term stability during aging is better. The LiNi0,5Mn1,5O4 high voltage material was synthetized in both its forms in comparable or even better quality compared with the results from foreign laboratories. The synthesis process was watched in-situ by SEM, thanks to which a unique study of the ongoing changes during synthesis was done. Also the best suitable electrolytes for this material were identified from the viewpoint of stability at high voltages, which is important for the future practical use. Doping of the material with chromium resulted in better stability and capacity both during cycling at standard conditions and at higher temperature and load. A significant impact of the separators on the overall electrochemical properties of the cathode materials was proved, which could be a big benefit for their future usage.
Study of the properties of a cathode material for Li-ion cells depending on the structure of the active layer
Kršňák, Jiří ; Vondrák, Jiří (referee) ; Kazda, Tomáš (advisor)
This article deals with properties of cathode material of lithium-ion cells study in term of active layer dependence. Aim of the work is to get familiar with problematics of cathode material production and diagnostics and to compare different active layer production methods. The opening of the work is concentrating on rechargeable batteries, mainly lithium-ion batteries and their electrode materials. Practical part is describing method of cathode material production and its characteristics.
Study of influence of admixtures on electrochemical characteristics electrode materials for lithium-ion batteries
Nejedlý, Libor ; Jirák, Tibor (referee) ; Sedlaříková, Marie (advisor)
The bachelor project deals with new intercalation materials with admixtures for positive electrode of lithium-ion accumulators. Concretely, the project works with new preparation methods of electrode materials and compares them with long-established industrial process. For this purpose were used electrochemical measurements and structure analysis obtaining materials. The theoretical part of the project is devoted summary of electrochemical power sources, electrochemical reactions, recycling and future of Li-ion batteries. The practical part describes electrochemical methods, measurements and discusses achieved results.
Modification of Cathode Materials for Lithium-Ion Accumulators
Kazda, Tomáš ; Studničková, Marie (referee) ; Vanýsek, Petr (referee) ; Vondrák, Jiří (advisor)
This doctoral thesis deals with properties of cathode materials for Lithium-Ion accumulators. The theoretical part consists of an overview of the cathode materials and a brief introduction into the very wide area of Lithium-Ion accumulators. The goal of this work was to study the LiCoO2 cathode material and to prepare some modifications of it by doping with other elements. This work was then extended with the study of the new generation of high-voltage cathode materials. The aim of this part was to study their synthesis, their physical and electrochemical properties and the influence of used electrolytes on their electrochemical stability. The work then focuses on the influence of doping these materials and the influence of another part of the battery – the separator – on the overall properties of these types of cathode materials. The results show that doping the LiCoO2 cathode material with sodium and potassium lead to an enhancement of some electrochemical properties as stability during cycling or stability at higher loads and also the long-term stability during aging is better. The LiNi0,5Mn1,5O4 high voltage material was synthetized in both its forms in comparable or even better quality compared with the results from foreign laboratories. The synthesis process was watched in-situ by SEM, thanks to which a unique study of the ongoing changes during synthesis was done. Also the best suitable electrolytes for this material were identified from the viewpoint of stability at high voltages, which is important for the future practical use. Doping of the material with chromium resulted in better stability and capacity both during cycling at standard conditions and at higher temperature and load. A significant impact of the separators on the overall electrochemical properties of the cathode materials was proved, which could be a big benefit for their future usage.
Materials and Components for Lithium-Ion Power Sources
Jirák, Tibor ; Kadlec, Jaromír (referee) ; Paidar,, Martin (referee) ; Vondrák, Jiří (advisor)
The dissertation thesis deals with electrode materials and components for lithium-ion power sources. The thesis works with two different kinds of materials, concretely nanostructured Li4Ti5O12 with spinel basis and LiCoO2 with layered structure. The electrochemical properties, structure and element analysis and utilization possibilities in electrochemical industry of new technological electrode material Li4Ti5O12 were investigated. The influences of admixtures and electrolytes on characteristics of electrode materials with aforesaid active masses were also examined. Low cost price, environmental safety and obtained results of electrochemical measurements and structure analysis refer to wide possibilities of usage electrode material Li4Ti5O12 in the field of electrochemistry.
Study of influence of admixtures on electrochemical characteristics electrode materials for lithium-ion batteries
Nejedlý, Libor ; Jirák, Tibor (referee) ; Sedlaříková, Marie (advisor)
The bachelor project deals with new intercalation materials with admixtures for positive electrode of lithium-ion accumulators. Concretely, the project works with new preparation methods of electrode materials and compares them with long-established industrial process. For this purpose were used electrochemical measurements and structure analysis obtaining materials. The theoretical part of the project is devoted summary of electrochemical power sources, electrochemical reactions, recycling and future of Li-ion batteries. The practical part describes electrochemical methods, measurements and discusses achieved results.
Study of the properties of a cathode material for Li-ion cells depending on the structure of the active layer
Kršňák, Jiří ; Vondrák, Jiří (referee) ; Kazda, Tomáš (advisor)
This article deals with properties of cathode material of lithium-ion cells study in term of active layer dependence. Aim of the work is to get familiar with problematics of cathode material production and diagnostics and to compare different active layer production methods. The opening of the work is concentrating on rechargeable batteries, mainly lithium-ion batteries and their electrode materials. Practical part is describing method of cathode material production and its characteristics.
Positive electrode for lůithium-ion batteries based on LiCoO2
Krištof, Petr ; Kazda, Tomáš (referee) ; Sedlaříková, Marie (advisor)
This diploma thesis deals with materials used by production ofcathodes of Lithium-ion batteries. Primary this thesis deals with LiCoO2material and its subsidizing of alkali metals. The first part deals with the charakteristic of Lithium-ion batteries, used materials, possibilities of doping and charging. The practical part concentrates on production of active substance of cathode and doping this substance by sodium and potassium. The methods of evaluation were used galvanostaticcycling and x-ray analysis (XRD).

Interested in being notified about new results for this query?
Subscribe to the RSS feed.